### Friday, December 4, 2015

# p. 644: 5, 8, 9, 13, 14, 15, 20, 22, 24

#### Problem 5

*Problem.* Find a first-degree polynomial function  $P_1$  whose value and slope agree with the value and slope of  $f(x) = \frac{\sqrt{x}}{4}$  at x = 4. Solution.

$$f(x) = \frac{\sqrt{x}}{4},$$
  

$$f(4) = 1,$$
  

$$f'(x) = \frac{1}{8}x^{-1/2},$$
  

$$f'(4) = \frac{1}{16}.$$

So,  $P_1(x) = 1 + \frac{(x-4)}{16}$ .

#### Problem 8

*Problem.* Find a first-degree polynomial function  $P_1$  whose value and slope agree with the value and slope of  $f(x) = \tan x$  at  $x = \frac{\pi}{4}$ .

Solution.

$$f(x) = \tan x,$$
  

$$f(\frac{\pi}{4}) = 1,$$
  

$$f'(x) = \sec^2 x,$$
  

$$f'(\frac{\pi}{4}) = 2.$$

So,  $P_1(x) = 1 + 2(x - \frac{\pi}{4})$ .

### Problem 9

Problem. Use a graphing utility to graph  $f(x) = \frac{4}{\sqrt{x}}$  and its second-degree polynomial approximation  $P_2(x) = 4 - 2(x-1) + \frac{3}{2}(x-1)^2$  at c = 1. Complete the table comparing values of f and  $P_2$ .

Solution. The graphs:



The table:

| x        | 0        | 0.8    | 0.9    | 1 | 1.1    | 1.2    | 2      |
|----------|----------|--------|--------|---|--------|--------|--------|
| f(x)     | $\infty$ | 4.4721 | 4.2163 | 4 | 3.8138 | 3.6514 | 2.8284 |
| $P_2(x)$ | 7.5      | 4.46   | 4.215  | 4 | 3.815  | 3.66   | 3.5    |

# Problem 13

Problem. Find the 4th Maclaurin polynomial for the function  $f(x) = e^{4x}$ . Solution. The table of coefficients:

| n | $f^{(n)}(x)$ | $f^{(n)}(0)$ | $\frac{f^{(n)}(0)}{n!}$ |
|---|--------------|--------------|-------------------------|
| 0 | $e^{4x}$     | 1            | 1                       |
| 1 | $4e^{4x}$    | 4            | 4                       |
| 2 | $4^2 e^{4x}$ | $4^{2}$      | $\frac{4^2}{2!}$        |
| 3 | $4^3 e^{4x}$ | $4^{3}$      | $\frac{4^3}{3!}$        |
| 4 | $4^4 e^{4x}$ | $4^{4}$      | $\frac{4^4}{4!}$        |

$$P_4(x) = 1 + 4x + \frac{4^2 x^2}{2!} + \frac{4^3 x^3}{3!} + \frac{4^4 x^4}{4!}$$
$$= 1 + 4x + 8x^2 + \frac{32}{3}x^3 + \frac{32}{3}x^4.$$

# Problem 14

*Problem.* Find the 5th Maclaurin polynomial for the function  $f(x) = e^{-x}$ .

Solution. The table of coefficients:

| n | $f^{(n)}(x)$ | $f^{(n)}(0)$ | $\frac{f^{(n)}(0)}{n!}$ |
|---|--------------|--------------|-------------------------|
| 0 | $e^{-x}$     | 1            | 1                       |
| 1 | $-e^{-x}$    | -1           | -1                      |
| 2 | $e^{-x}$     | 1            | $\frac{1}{2!}$          |
| 3 | $-e^{-x}$    | -1           | $-\frac{1}{3!}$         |
| 4 | $e^{-x}$     | 1            | $\frac{1}{4!}$          |
| 5 | $-e^{-x}$    | -1           | $-\frac{1}{5!}$         |

$$P_4(x) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!}$$
  
= 1 - x +  $\frac{1}{2}x^2 - \frac{1}{6}x^3 + \frac{1}{24}x^4 - \frac{1}{120}x^5.$ 

# Problem 15

Problem. Find the 4th Maclaurin polynomial for the function  $f(x) = e^{-x/2}$ . Solution. The table of coefficients:

| n | $f^{(n)}(x)$            | $f^{(n)}(0)$       | $\frac{f^{(n)}(0)}{n!}$    |
|---|-------------------------|--------------------|----------------------------|
| 0 | $e^{-x/2}$              | 1                  | 1                          |
| 1 | $-\frac{e^{-x/2}}{2}$   | $-\frac{1}{2}$     | $-\frac{1}{2}$             |
| 2 | $\frac{e^{-x/2}}{2^2}$  | $\frac{1}{2^2}$    | $\frac{1}{2^2 \cdot 2!}$   |
| 3 | $-\frac{e^{-x/2}}{2^3}$ | $-\frac{1}{2^{3}}$ | $-\frac{1}{2^{3}\cdot 3!}$ |
| 4 | $\frac{e^{-x/2}}{2^4}$  | $\frac{1}{2^4}$    | $\frac{1}{2^4 \cdot 4!}$   |

$$P_4(x) = 1 - \frac{x}{2} + \frac{x^2}{2^2 \cdot 2!} - \frac{x^3}{2^3 \cdot 3!} + \frac{x^4}{2^4 \cdot 4!}$$
$$= 1 - \frac{1}{2}x + \frac{1}{8}x^2 - \frac{1}{48}x^3 + \frac{1}{384}x^4.$$

# Problem 20

*Problem.* Find the 4th Maclaurin polynomial for the function  $f(x) = x^2 e^{-x}$ .

Solution. Now things start to get a little messy. We need to compute the first 4 derivatives of  $x^2 e^{-x}$ .

$$f'(x) = 2xe^{-x} - x^2e^{-x}$$
  
=  $(2x - x^2)e^{-x}$ ,  
$$f''(x) = (2 - 2x)e^{-x} - (2x - x^2)e^{-x}$$
  
=  $(2 - 4x + x^2)e^{-x}$ ,  
$$f'''(x) = (-4 + 2x)e^{-x} - (2 - 4x + x^2)e^{-x}$$
  
=  $(-6 + 6x - x^2)e^{-x}$ ,  
$$f^{(4)}(x) = (6 - 2x)e^{-x} - (-6 + 6x - x^2)e^{-x}$$
  
=  $(12 - 8x + x^2)e^{-x}$ .

The table of coefficients:

| n | $f^{(n)}(x)$            | $f^{(n)}(0)$ | $\frac{f^{(n)}(0)}{n!}$ |
|---|-------------------------|--------------|-------------------------|
| 0 | $x^2 e^{-x}$            | 0            | 0                       |
| 1 | $(2x - x^2)e^{-x}$      | 0            | 0                       |
| 2 | $(2-4x+x^2)e^{-x}$      | 2            | $\frac{2}{2!}$          |
| 3 | $(-6+6x-x^2)e^{-x}$     | -6           | $-\frac{6}{3!}$         |
| 4 | $(12 - 8x + x^2)e^{-x}$ | 12           | $\frac{12}{4!}$         |

$$P_4(x) = x^2 - x^3 + \frac{x^4}{2}$$
$$= x^2 - x^3 + \frac{1}{2}x^4.$$

There is a quick way to work this problem. We already know that the seconddegree Taylor Polynomial for  $e^{-x}$  is  $1-x+\frac{1}{2}x^2$ . We could simply multiply it termwise by  $x^2$  to get the fourth-degree Taylor polynomial for  $x^2e^{-x}$ .

### Problem 22

Problem. Find the 4th Maclaurin polynomial for the function  $f(x) = \frac{x}{x+1}$ .

Solution. We need to compute the first 4 derivatives of  $\frac{x}{x+1}$ .

$$f'(x) = \frac{(x+1) \cdot 1 - 1 \cdot x}{(x+1)^2}$$
$$= \frac{1}{(x+1)^2},$$
$$f''(x) = -\frac{2!}{(x+1)^3},$$
$$f'''(x) = \frac{3!}{(x+1)^4},$$
$$f^{(4)}(x) = -\frac{4!}{(x+1)^4}.$$

The table of coefficients:

| n | $f^{(n)}(x)$          | $f^{(n)}(0)$ | $\frac{f^{(n)}(0)}{n!}$ |
|---|-----------------------|--------------|-------------------------|
| 0 | $\frac{x}{x+1}$       | 0            | 0                       |
| 1 | $\frac{1}{(x+1)^2}$   | 1            | 1                       |
| 2 | $-\frac{2!}{(x+1)^3}$ | 2!           | $-\frac{2!}{2!} = -1$   |
| 3 | $\frac{3!}{(x+1)^4}$  | 3!           | $-\frac{3!}{3!} = 1$    |
| 4 | $-\frac{4!}{(x+1)^4}$ | -4!          | $\frac{-4!}{4!} = -1$   |

$$P_4(x) = x - x^2 + x^3 - x^4.$$

We could work this problem much faster if we noted that  $f(x) = x \cdot \frac{1}{x+1}$  and that  $\frac{1}{x+1}$  can be expanded as a geometric series:

$$\frac{1}{1+x} = \frac{1}{1-(-x)}$$
$$= 1 - x + x^2 - x^3 + \cdots$$

Then multiply by x and use the terms up to  $x^4$  to get  $x - x^2 + x^3 - x^4$ .

### Problem 24

*Problem.* Find the 3rd Maclaurin polynomial for the function  $f(x) = \tan x$ .

Solution. We need to compute the first 3 derivatives of  $\tan x$ .

$$f'(x) = \sec^2 x,$$
  

$$f''(x) = 2 \sec x \cdot \sec x \tan x$$
  

$$= 2 \sec^2 x \tan x,$$
  

$$f'''(x) = (4 \sec x \cdot \sec x \tan x)(\tan x) + (2 \sec^2 x)(\sec^2 x))$$
  

$$= 4 \sec^2 x \tan^2 x + 2 \sec^4 x.$$

The table of coefficients:

| n | $f^{(n)}(x)$                     | $f^{(n)}(0)$ | $\frac{f^{(n)}(0)}{n!}$      |
|---|----------------------------------|--------------|------------------------------|
| 0 | $\tan x$                         | 0            | 0                            |
| 1 | $\sec^2 x$                       | 1            | 1                            |
| 2 | $2\sec^2 x \tan x$               | 0            | 0                            |
| 3 | $4\sec^2 x \tan^2 x + 2\sec^4 x$ | 2            | $\frac{2}{3!} = \frac{1}{3}$ |

$$P_3(x) = x + \frac{x}{3}$$
$$= x + \frac{1}{3}x.$$