Friday, December 4, 2015

p. 644: $5,8,9,13,14,15,20,22,24$

Problem 5

Problem. Find a first-degree polynomial function P_{1} whose value and slope agree with the value and slope of $f(x)=\frac{\sqrt{x}}{4}$ at $x=4$.
Solution.

$$
\begin{aligned}
f(x) & =\frac{\sqrt{x}}{4} \\
f(4) & =1 \\
f^{\prime}(x) & =\frac{1}{8} x^{-1 / 2} \\
f^{\prime}(4) & =\frac{1}{16}
\end{aligned}
$$

So, $P_{1}(x)=1+\frac{(x-4)}{16}$.

Problem 8

Problem. Find a first-degree polynomial function P_{1} whose value and slope agree with the value and slope of $f(x)=\tan x$ at $x=\frac{\pi}{4}$.

Solution.

$$
\begin{aligned}
f(x) & =\tan x \\
f\left(\frac{\pi}{4}\right) & =1 \\
f^{\prime}(x) & =\sec ^{2} x, \\
f^{\prime}\left(\frac{\pi}{4}\right) & =2
\end{aligned}
$$

So, $P_{1}(x)=1+2\left(x-\frac{\pi}{4}\right)$.

Problem 9

Problem. Use a graphing utility to graph $f(x)=\frac{4}{\sqrt{x}}$ and its second-degree polynomial approximation $P_{2}(x)=4-2(x-1)+\frac{3}{2}(x-1)^{2}$ at $c=1$. Complete the table comparing values of f and P_{2}.

Solution. The graphs:

The table:

x	0	0.8	0.9	1	1.1	1.2	2
$f(x)$	∞	4.4721	4.2163	4	3.8138	3.6514	2.8284
$P_{2}(x)$	7.5	4.46	4.215	4	3.815	3.66	3.5

Problem 13

Problem. Find the 4th Maclaurin polynomial for the function $f(x)=e^{4 x}$. Solution. The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$\frac{f^{(n)}(0)}{n!}$
0	$e^{4 x}$	1	1
1	$4 e^{4 x}$	4	4
2	$4^{2} e^{4 x}$	4^{2}	$\frac{4^{2}}{2!}$
3	$4^{3} e^{4 x}$	4^{3}	$\frac{4^{3}}{3!}$
4	$4^{4} e^{4 x}$	4^{4}	$\frac{4^{4}}{4!}$

$$
\begin{aligned}
P_{4}(x) & =1+4 x+\frac{4^{2} x^{2}}{2!}+\frac{4^{3} x^{3}}{3!}+\frac{4^{4} x^{4}}{4!} \\
& =1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4} .
\end{aligned}
$$

Problem 14

Problem. Find the 5th Maclaurin polynomial for the function $f(x)=e^{-x}$.

Solution. The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$\frac{f^{(n)}(0)}{n!}$
0	e^{-x}	1	1
1	$-e^{-x}$	-1	-1
2	e^{-x}	1	$\frac{1}{2!}$
3	$-e^{-x}$	-1	$-\frac{1}{3!}$
4	e^{-x}	1	$\frac{1}{4!}$
5	$-e^{-x}$	-1	$-\frac{1}{5!}$

$$
\begin{aligned}
P_{4}(x) & =1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!} \\
& =1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5} .
\end{aligned}
$$

Problem 15

Problem. Find the 4th Maclaurin polynomial for the function $f(x)=e^{-x / 2}$.
Solution. The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$\frac{f^{(n)}(0)}{n!}$
0	$e^{-x / 2}$	1	1
1	$-\frac{e^{-x / 2}}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$
2	$\frac{e^{-x / 2}}{2^{2}}$	$\frac{1}{2^{2}}$	$\frac{1}{2^{2} \cdot 2!}$
3	$-\frac{e^{-x / 2}}{2^{3}}$	$-\frac{1}{2^{3}}$	$-\frac{1}{2^{3} \cdot 3!}$
4	$\frac{e^{-x / 2}}{2^{4}}$	$\frac{1}{2^{4}}$	$\frac{1}{2^{4} \cdot 4!}$

$$
\begin{aligned}
P_{4}(x) & =1-\frac{x}{2}+\frac{x^{2}}{2^{2} \cdot 2!}-\frac{x^{3}}{2^{3} \cdot 3!}+\frac{x^{4}}{2^{4} \cdot 4!} \\
& =1-\frac{1}{2} x+\frac{1}{8} x^{2}-\frac{1}{48} x^{3}+\frac{1}{384} x^{4} .
\end{aligned}
$$

Problem 20

Problem. Find the 4th Maclaurin polynomial for the function $f(x)=x^{2} e^{-x}$.

Solution. Now things start to get a little messy. We need to compute the first 4 derivatives of $x^{2} e^{-x}$.

$$
\begin{aligned}
f^{\prime}(x) & =2 x e^{-x}-x^{2} e^{-x} \\
& =\left(2 x-x^{2}\right) e^{-x}, \\
f^{\prime \prime}(x) & =(2-2 x) e^{-x}-\left(2 x-x^{2}\right) e^{-x} \\
& =\left(2-4 x+x^{2}\right) e^{-x}, \\
f^{\prime \prime \prime}(x) & =(-4+2 x) e^{-x}-\left(2-4 x+x^{2}\right) e^{-x} \\
& =\left(-6+6 x-x^{2}\right) e^{-x}, \\
f^{(4)}(x) & =(6-2 x) e^{-x}-\left(-6+6 x-x^{2}\right) e^{-x} \\
& =\left(12-8 x+x^{2}\right) e^{-x} .
\end{aligned}
$$

The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$\frac{f^{(n)}(0)}{n!}$
0	$x^{2} e^{-x}$	0	0
1	$\left(2 x-x^{2}\right) e^{-x}$	0	0
2	$\left(2-4 x+x^{2}\right) e^{-x}$	2	$\frac{2}{2!}$
3	$\left(-6+6 x-x^{2}\right) e^{-x}$	-6	$-\frac{6}{3!}$
4	$\left(12-8 x+x^{2}\right) e^{-x}$	12	$\frac{12}{4!}$

$$
\begin{aligned}
P_{4}(x) & =x^{2}-x^{3}+\frac{x^{4}}{2} \\
& =x^{2}-x^{3}+\frac{1}{2} x^{4}
\end{aligned}
$$

There is a quick way to work this problem. We already know that the seconddegree Taylor Polynomial for e^{-x} is $1-x+\frac{1}{2} x^{2}$. We could simply multiply it termwise by x^{2} to get the fourth-degree Taylor polynomial for $x^{2} e^{-x}$.

Problem 22

Problem. Find the 4th Maclaurin polynomial for the function $f(x)=\frac{x}{x+1}$.

Solution. We need to compute the first 4 derivatives of $\frac{x}{x+1}$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x+1) \cdot 1-1 \cdot x}{(x+1)^{2}} \\
& =\frac{1}{(x+1)^{2}} \\
f^{\prime \prime}(x) & =-\frac{2!}{(x+1)^{3}}, \\
f^{\prime \prime \prime}(x) & =\frac{3!}{(x+1)^{4}}, \\
f^{(4)}(x) & =-\frac{4!}{(x+1)^{4}} .
\end{aligned}
$$

The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$\frac{f^{(n)}(0)}{n!}$
0	$\frac{x}{x+1}$	0	0
1	$\frac{1}{(x+1)^{2}}$	1	1
2	$-\frac{2!}{(x+1)^{3}}$	$2!$	$-\frac{2!}{2!}=-1$
3	$\frac{3!}{(x+1)^{4}}$	$3!$	$-\frac{3!}{3!}=1$
4	$-\frac{4!}{(x+1)^{4}}$	$-4!$	$\frac{-4!}{4!}=-1$

$$
P_{4}(x)=x-x^{2}+x^{3}-x^{4} .
$$

We could work this problem much faster if we noted that $f(x)=x \cdot \frac{1}{x+1}$ and that $\frac{1}{x+1}$ can be expanded as a geometric series:

$$
\begin{aligned}
\frac{1}{1+x} & =\frac{1}{1-(-x)} \\
& =1-x+x^{2}-x^{3}+\cdots
\end{aligned}
$$

Then multiply by x and use the terms up to x^{4} to get $x-x^{2}+x^{3}-x^{4}$.

Problem 24

Problem. Find the 3rd Maclaurin polynomial for the function $f(x)=\tan x$.

Solution. We need to compute the first 3 derivatives of $\tan x$.

$$
\begin{aligned}
f^{\prime}(x) & =\sec ^{2} x \\
f^{\prime \prime}(x) & =2 \sec x \cdot \sec x \tan x \\
& =2 \sec ^{2} x \tan x \\
f^{\prime \prime \prime}(x) & =(4 \sec x \cdot \sec x \tan x)(\tan x)+\left(2 \sec ^{2} x\right)\left(\sec ^{2} x\right) \\
& =4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x .
\end{aligned}
$$

The table of coefficients:

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$\frac{f^{(n)}(0)}{n!}$
0	$\tan x$	0	0
1	$\sec ^{2} x$	1	1
2	$2 \sec ^{2} x \tan x$	0	0
3	$4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x$	2	$\frac{2}{3!}=\frac{1}{3}$

$$
\begin{aligned}
P_{3}(x) & =x+\frac{x}{3} \\
& =x+\frac{1}{3} x .
\end{aligned}
$$

